Online Incremental Structure Learning of Sum-Product Networks

نویسندگان

  • Sang-Woo Lee
  • Min-Oh Heo
  • Byoung-Tak Zhang
چکیده

Sum–product networks (SPNs) are deep architectures that can learn and infer at low computational costs. The structure of SPNs is especially important for their performance; however, structure learning for SPNs has until now been introduced only for batch-type dataset. In this study, we propose a new online incremental structure learning method for SPNs. We note that SPNs can be represented by mixtures of basis distributions. Online learning of SPNs can be formulated as an online clustering problem, in which a local assigning instance corresponds to modifying the tree-structure of the SPN incrementally. In the method, the number of hidden units and even layers are evolved dynamically on incoming data. The experimental results show that the proposed method outperforms the online version of the previous method. In addition, it achieves the performance of batch structure learning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Structure Learning for Sum-Product Networks with Gaussian Leaves

Sum-product networks have recently emerged as an attractive representation due to their dual view as a special type of deep neural network with clear semantics and a special type of probabilistic graphical model for which inference is always tractable. Those properties follow from some conditions (i.e., completeness and decomposability) that must be respected by the structure of the network. As...

متن کامل

On the effect of low-quality node observation on learning over incremental adaptive networks

In this paper, we study the impact of low-quality node on the performance of incremental least mean square (ILMS) adaptive networks. Adaptive networks involve many nodes with adaptation and learning capabilities. Low-quality mode in the performance of a node in a practical sensor network is modeled by the observation of pure noise (its observation noise) that leads to an unreliable measurement....

متن کامل

Online Algorithms for Sum-Product Networks with Continuous Variables

Sum-product networks (SPNs) have recently emerged as an attractive representation due to their dual interpretation as a special type of deep neural network with clear semantics and a tractable probabilistic graphical model. We explore online algorithms for parameter learning in SPNs with continuous variables. More specifically, we consider SPNs with Gaussian leaf distributions and show how to d...

متن کامل

Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology

Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...

متن کامل

Learning the Structure of Sum-Product Networks via an SVD-based Algorithm

Sum-product networks (SPNs) are a recently developed class of deep probabilistic models where inference is tractable. We present two new structure learning algorithms for sum-product networks, in the generative and discriminative settings, that are based on recursively extracting rank-one submatrices from data. The proposed algorithms find the subSPNs that are the most coherent jointly in the i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013